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AN ANISOTROPICALLY ELASTIC SPHERE IN FREE MOTION

V.V. NOVIKOV

Corrections are found to the inertial tensor components of a rotating
sphere in the case of small anisotropy of its elastic properties of
general form. Singularities in the behaviour of the freely rotating
sphere due to the intrinsic elasticity are discussed in specific examples.
Without making any assumptions on the smallness of the anisotropy, the
strain is calculated for a sphere having a plane of isotropy. It was
shown /1, 2/ in the problem of the motion of a solid deformable body
around a centre of mass under the simplifying assumptions that the natural
vibration frequencies greatly exceed the angular velocity while the
internal friction forces ensure sufficiently rapid damping of the natural
vibrations, that taking account of the intrinsic elasticity of the body
is equivalent to the action of a moment on it proportional to the fourth
power of the angular velocity component and calculated by means of the
solution of the quasistatic problem of the deformation of a rotating body.
The moment corresponding to the influence of the intrinsic elasticity
has been calculated /3/ for a body close in shape to a sphere. The
homogeneous anisotropically elastic sphere in free motion considered in
this paper is still another example when the solution of this problem
can be obtained by analytic means. The representation of the behaviour
of this system can turn out to be useful when considering questions of the
earth's motion in connection with the hypothesis that the earth has the
features of a complex crystal.

Let us represent the stress tensor in the form
Oiy=Muy;0;; + 2pui; + Cimmbbnm

where u;; is the strain temsor, A and p are Lamé constants, and u; are the components of the
displacement vector. The tensor of the elastic constants Cimm satisfies the following
symmetry conditions /5/:
Cijnm = Cjinm ™ Cijmn = Cnmij

and has 21 indepdent components in the most general case of an anisotropic linearly elastic
body.

We shall consider only the almost Eulerian motions of a deformable body. This is possible
if it is sufficiently rigid and the vibrations of the elastic body that occur damp out rapidly
/2/. The elastic constants are such that the following inequalities are satisfied

e €81 (e = pR¥(nt,?) 1)
where p is the density, R is the radius of the sphere, f/, is the characteristic time of sphere
motion as a whole, and § is the ratio of the greatest of the elastic constants c;;,m to
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(Cisam = Wbayjnm)-
We represent the displacement vector wu{r,:) in the form of a series in the small par-

ameters & and & and we confine ourselves to just the first terms therein
u{r, £} = e [uy(r, £) + Sy, {r, 1)}
Under assumptions (1) the elastic displacements wu,(r,7) and W (r, {) can be evaluated in

the Ozxyz; coordinate system, fixed in the undeformed sphere /3/.
The displacement vector u (r,!) is determined as a result of solving the following

problems.
1°. The problem of the deformation of a rotating, homogeneous, isotropic sphere
001;%8zy = f; inV;04°n;=0 on § 2)
B du fu, . du .
01;=%-———a;; 8, + zu-?z + az‘:l , u=%

f=ox(@XxTr)
{m is the angular velocity, and n is the vector normal to the surface). Here and henceforth,
R,t,, are taken as scale factors and ¥ is the mass of the sphere

2°. The problem of calculating wu,(r,?) for known wu,{r, f).

; ; 3

au;l duy; ou
s o — __mn, v
% %, 8;+2 7, = ®ijmn 7, inV
N R
(euiby; -+ 2ul) Ty == — @yjmnlima; ON S
M 1 Buy duyy ) 1 1y, ity
W= \Tm twm ) “‘f“"z’(“”‘a.z] 7 )

Taking account of the elastic properties of the body, the angular velocity o is deter-
mined as a result of solving the equation
K+oaxK=0

where the components of the kinetic moment vector K (taking into account only terms linear
in u ) are determined as follows:

Ky = Iimom
T =\ (@4 + 2251) S — (212 4+ 220)] AV = Lo & (i + 81}m)
v
We will use the solution of the problem (2) presented in /3/. We have in a Cartesian
system of coordinates

ton =2 [08 (o — by 4 8+ 28) ol (1 — )]
(zay0y + ayor05) [ — &+ (36 — ) %
(% 2t — 3,%) — 2511‘1%] F T TaTy 00 (551 - % -

2y (x” + 2%+ P of (——23l -+ §g) +

o,z [Elez + ";"(1 — 6E)) (z* + zaz)] +
1

T4 [zsP0,® -+ z5%0,?] (108, — 1)

- 3 -2 t, = 1 _ 1
T2 14 ' S2T 5 (x+2) ! &L= 15 (3% 4- 2)

Cyclic permutation of z;, 7, 3 and @, ©g, 03 yields u,, and ugs.
The solution of the problem (3) is preceded by the calculation of the expressions on the

right-hand sides of the equations and boundary conditions., The expressions are not presented

because of their awkwardness.
Utilizing the fact that OJum,”/9z; are linear in =z, ¥y, T3 while wum,"f; contains linear

and cubic terms in the space coordinates, we represent the problem (3) in the following form

(% + 1) grad div u; + Au; = z,8; -+ 248, + zaasinV )
du ) du,, du n
[% -#%' + -;,*}j" -+ —dff-] Zy= by + bty "%, 2, )]

n+k+1=3 on §
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The quantities @y, b;;, by, in these relationships include 21 elastic constants @ijam in
the general case.

Starting from the equations and boundary conditions (4) and (5), it can be concluded that
u, (r, ?) should be sought in the form of polynomials

— k, m,. P
ul—'Anzn -+ Bkmpxl Ty T3

nkmp=1,2,3 k+m+p=3

It is necessary to determine 39 quantities A, and Bimp.

After substituting u, into (4), equating terms in x,,r; z; to zero, we obtain 9 equatios.
The boundary conditions (5) yield 3 relationships that satisfy z,® 4+ z,®8 + 23> = 1 on the surface
of the sphere. Each of them can be represented in the form

3

2 x; [Dyy + 22Dy + 2,204y + 25*Dys) + 2125730, =0

i=1

where D;; and D, contain unknown expansion coefficients Ay, Byymp and the parameters a;jym.
Requiring that the equation for the surface of the sphere be extracted in the expressions in
the square brackets, and that the expression with =z,z,27; vanish, we obtain 30 algebraic
equations.

The system of 39 equations from which the quantities A,,and B,p,,,,, are determined are
separated into four groups of equations. Coefficients evaluated independently of the others
and, respectively, determining the additions to the diagonal components of the inertial tensor
I:i" and to the centrifugal moments of inertia [I,,", I,5", 133" are in each of the groups.

The solution of problem (4), (5) results in the following expressions for the corrections
to the inertial tensor components

I," = 2/35 {©® le@1111 + €4 (@122 + 113s) + & (@2 +
@y315) + E14 (@3990 + B3393) + €1783095 + B15aa325] +
1% [e981511 + €5 (@120 + @1135) + €10 (1212 + 1315) +
&15 (@200 + 282933 + @3330)] + ©37 (8681100 -+ €:81155 +
1081212 + E1a@azez T+ E1slazzs T (E1s + V/aBae) Gg33s + (€10 +
€2) Ba3as) + 03 (8781150 + 8481193 + £1081915 1 (815 +
1/3829) @aa2e T €16@235 T B16@3s33 T (E10 + €35) Gasas]l +
0,0, (2301550 + £11@1000 + 1281055 T (2819 T 8g4) Bysasl +
@05 (838150 + (2810 + €55) Qrags T €1281520 + Epa@rsasl -+
0,05 (8581105 1 281081015 + €13 (B2203 T Ba3sa)]}

I," = —1/35 {—o® [(en + €u) (@112 + @1999) — 2081293 +
(2819 + €5) Aysasl + @4 [{E21 + Y3€a5) G111 + €2181000 +
(€21 — 235) @aaza] + @2® [ny@iy1e + (Bay + VaBas) Graee + (€1 —
£40) Giasal + 05 [890 (31315 + @1292) + €x@1200 T 282501000] +
105 [€20 (83111 + 281105+ @asne) + €24 (B1155 T Bags8) +
E2581012 T €25 (Quara + Gases) T Explszss] + @105 [E2381105 T
(€25 — £25) G115 T (E23 — €as) (G223 + 3339)]
0303 (82301300t (B2 — €a5) (@1113 -+ @1330) + (o5 —
€25) 21223l }

ey = pp — By B £ R, — 12, — 1408,

eg= — i B TE — 5B+ 128,

£y = — - + 28 + 425, — 128, + 2458,

R R = = ey
SR R T . AR 2
R

b= — - + By o+ TE + 1082

44 -
gy =— — —3— =+ '14§3 -+ —E—Elz -+ 8‘5152
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NIRRT

&89 = 4&; (28, — Yoy

& = Y5 + 148, — 65 -+ 24L5:L,

€12 = Yy + 28F, — 14%,— 22/3E,% + BE L,

g1 = Yy — 28, -+ 148, + 18,2 + 24L,E,

B — 2 g 4_69 & — ‘%‘Elz — 858, — 128,

6 I
"M 5. 7
gy=—- + 3 b+ 5105
Brg == — % + 9% + _2731—&’ + _223”§12 +AZE
77 511 49 8 5
B =5 — g b~ g & — g &’ — 88" — 5605 —
16
—5— &aba — 1405,8,
4 «
ere = — o + 198, + 148, + S B2 4 4L,
16 !
= — —— (&, + 35, &y =— (1 — 145

1 7 1 7
En=—— —2‘§1 -+ 145,%, Epp=r7 —"F & — 185

By == 28y (14E; — 1), €= _;_‘ — 12§, 4 70E,?

7 7
B =2(1 — 28 +65,%), ep=— -+ 55— 145 —
8 . 7
3 52— 888, gy =—— '—2— - —2-'&1 + 142E.2

e = 45,7, &y = Y, — 5&; + 25§,

The expressions for the remaining corrections to the inertial tensor components are
obtained as a result of cyclic permutation of ;, w; ©w3; and the subscripts 1,42, 3in @ipy
{the symmetry properties are used here).

The inertia tensor of an anisotropic elastic sphere has the form

o ’ " O 2
Lj=5Lf + ey + 81,); I,f==-58;
Iij,::%‘ [(02(—— %—- -+ E—g + 4, + 28&3) 8;+ (1 — 51)‘0#”1‘}

where [;,° 1is the inertial tensor of a non-deformable sphere, and J;; is the correction to
the inertial tensor related to the deformation u,.

The quantities [;;/, I;’ are quadratic functions of the angular velocity components. The
components of the kinetic moment vector and the body energy are represented in the form /3/

K== I'pqoq==I'pq0q + & (K1qim + 8K pqim) 04010, (6)

1 o 3 . -
E — T Ipq&)p(x}q + -'4— & (qulm ”{" §qufm} mpmqmlmh

The components of the tensors Kpim and Kpaim can be calculated from the results
presented in the paper. The components of the tensor K,um are not presented here because
of their awkwardness, while the following relationship holds for Kz;qzm

. 4 1
K pqtm® g0 == = [T — -—%—- -+ 28, 4 1453] ot

As in the case of a solid body or an elastic quasisphere /3/, the integrals of the Euler
equation ¥ = const and K? = const enable us to make a deduction about the nature of the
motion of the body by means of the hodograph of the vector relative to the body, which is
determined by the intersection of a centrally symmetric fourth-order surface E = const with
spherical surfaces 4/,F — !/, K%, = const corresponding to different K2.

Let us illustrate the results by the following two examples.

1°. A sphere in whose elastic properties there is an isotropy plane. B2ll the directions
in planes normal to the ¢, axis are equivalent with respect to the elastic properties and
the body is isotropic in these planes. In the general case the anisotropic properties of the
body are characterized by the following parameters /&/
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Q1133 = Gaz33 = @, A3918 — Qa3 — b, @aggy = ¢

The "non-spherical" part of the expression K;MMmpm¢mmm, that has the form

wg* 1aQy + 50, + cQs] + wg? (0 + ©5%) [a (Qr — Yaeas) -+ b (Qy —
£95) + ¢ (Q3 ~+ Y48g5)]
Q1= 8 + & — 2815 — €17, (3 = & | £ — &1
Q3 =8 + 8 — &4 — g
is of interest.
It can be seen that for any value of the parameter « =[0, ) (Polsson's ratio is 0o <
0,5) g5 > 0, @, > 0, while the quantities @, and Q; are negative, hence Q; — Ve >0, Q5+ Yyeas < 0.
let g=b=0 and c¢>0. The surface of the stress coefficients /6/ is an ellipsoid of
revolution, the most pliable body in the 0z;z, plane. We find from relationships (6) that
for constant K? the greatest energy corresponds to rotation around Oz;. Taking energy dis-
sipation into account, we conclude that rotation around the axes lying in the Oz, plane
will be asymptotically stable.

23

Fig.l Fig.2

The hodograph of the vector ¢ relative to the body is shown in Fig.l.
The analysis for aribitrary values of the parameters a,b,c can be performed analogously.

2°. A sphere whose elastic properties possess cubic symmetry. The anisotropy is character-
ized by the following parameters

oz = Guigs = Gyp33 = @, QGpg)p = Gy313 = Gggpz = b
11 7 Ggggp == dgazy = ¢

pglm
(1 — 28, +.85;2) (c — a — 2b) (0,20, + 0205 + 0205

The "non-spherical® part of the expression K . o,0,010, has the form

It vanishes for ¢= a¢+ 2b, which corresponds to an isotropic elastic body.

let a>0 and (or) 8>0,c= 0. The surface of the stress coefficients that has the
symmetry of a cube, is oriented so that the axes of the 0z,2,7; coordinate system pass through
the centre of the faces of the "cube", i.e., the body is most pliable in the direction of these
axes.

Fixing the magnitude of the kinetic moment vector, calculating its corresponding angular
velocities for different stationary rotations of the sphere, we find that the energy F is
minimal for o oriented towards the middle of the faces of the cubic surface of the stress
coefficients (Fig.2). As in the previous example, we conclude that only rotation. arcund- the
axes of greatest pliability will be asymptotically stable.

Therefore, there is a complete analogy between the behaviour of the freely rotating
anisotropic elastic sphere considered in this paper and the homogeneous isotropic elastic
quasisphere studied in /3/.

The study was carried out assuming small anisotropy of the elastic properties of the
body, resulting in a considerable simplification of the problem and enabling the corrections
to the inertial tensor components to be evaluated. If this assumption is dropped (6 ~ 1), the
problem is not solvable for anisotropy of the elastic properties of general form because of
difficulties of a calculational nature, although these difficulties can be overcome in a
number of the simplest cases.

In conclusion, without assuming the anisotropy to be small, we again examine a freely
rotating sphere in whose elastic properties there is a plane of isotropy. A quasistatic
problem of the form (2) is solved
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80,/0z; = fiinV;, oyn; =0 on §

0:; = Aypquy. The following components of the tensor hij, are different from zero

Here

Min = Aagas =% 4 2, Ajag =%, Rpppp =1

Miss = Aogss = @, Mgis + Moses = b, Agggy = ¢

The displacement vector is sought in the form of the polynomial

u=={qn, + l'kmn'":Lk"‘tzmx:i;7
n,k,m,p=1,2,3;k+m+p=3

Calculation of the quantities in this expression yields
Q13 = Gagy 911 = @22, J31 = q32
T1300 = T2030s Tii20 = Taz10v  Titoz == T2012
T1930 = Teg00» Ti0o12 = Taro2: Ti210 = Taize
T3a01 = Tgoats Tsr02 == Tz012: 71201 = T20m1
Tro21 = Teg01  T1008 = T2008s 73300 = T3030

Tg190 = Tg2ioy Tmmr = Teuiny Ti1z00 = Tuizo

a [%(1 +B)Q+ 2+ 3w, |

T1210= T 1)
b 3
T1012= —'4—92——2'"’1

. 1 a{l -+ b) a(2+ 3b) 1
1080 == 2+ 1) [ P Qz+( 5 _4(R+ 1))w‘lJ

1 1
ron = [T (1 + L+ 2+ 3w |
Q2 (x+1) [(a + 4b) (1 + b)— 263} — a2 (1 + b)

U1 ="+ 9= — 3 1) (24 - 86 I 3ab T 655 — T 2 F 35)
1
Twan = 3@ 10 (6 — 8)rygyy — 2w,
. a? — %c
T1201 = TR+ De—afy un
1
Tore = — oy (2% + 00 + Dyl
. R [
Taroe — TE (w2 uu
__ W a
Tos ™= — 3 T Fmrye—ay fun
Wy a2 — %e
Tageo = — =35~ + T g g

2 (3+b 441
Py = v (4b+ )0.)39—{— 1—0 -
(% + 2) ¢ — a?

(20 +3) (e — a®) 4~ 3c (o 1)

PRCEN -
wy =10 (73 + g5) = 4 (40+ 2 WL [
40 71
=]

1102 ==
1

T TZa(a - 2b)
. 1
e )
[ Z Qz‘i‘(a+b)“’52+8("+2)(a+b)’1soo_3bcrsoosJ
_ 1
n = (a4 2b) [(x+ 1) c —a?] |
[c(a+b)+2ab]w32+4[2b(n+2)(2a-—c)—|-c(a+2b)] X
T1300 T 3bc(2a-c)r3003}
1
95 = T I T =T | 20+ 1) — a1 @ —
[2b(x+1)+a(a+b)](032+4[2ab(x+2)—a(a+2b)—-

4b (% + 1) (% + 2)] 7330 + 36 [a — 2(x + 1)) raoos}

[-—3 2 — bog® — B (% + 2) bryge + 3 (a+98) Crsooa]

X

{%(c—Za)Q’-*-




606

Fuoon = o |- 1262 (2 — 2b) — ¢ (a a + b) + 2 (@ — b) (x + 1))+

1+ oli—4a% Lelalh—a)+ 4 (n + 1)) +
cﬁ(x+1+b)1}

o B DO+ 2)b 4 da (D —a) +

Ts008 =

20(2b + a—dab +a?) +cla +4(x + 1) (% +2) +
2{n +2)(3b — a))] + 02 [2a%(a — b) — 4ab (x + 2) —
cla - b) (2% + 3)1}

wy = 3 {—4a® {a {a + 2b) — 4b (x + 2)] + 2¢[2a (@ -+ b) (2 +
3) — 85 (x + 1) (x + 2) + ab (3¢ — )] + 2 [b — 6b (x +
D — 4+ 1) 6+ D)

It is assumed here that ; = v, = V2]/§Q. The quantities ¢y, Q21 $13: ¢35y Can be evaluated
by jointly considering the relationships w; = ¢ + goyy, Wy = Gy + ¢31+ and the condition of no
motion of the body as a whole Sr X ud¥ = 0 [3]. in the system Ora,r;.

v

The expressions presented for ¢:s Tijy; enable us to find the corrections to the inertia

tensor due to the anisotropies of the elastic properties of the sphere from the formulas

, ’ 2

Iy = Tp" = = {T{qy1 + 950) + #1500 + 3003 + Tzoe + 2rgem}
B 2

133 == 35~ {7911 + 471300 + Ty10e)

, 1
I3y 7= — e {Twy + Bryggg + 2r1g9 + 2ryps)

1
Iy w= Dy’ == — 55 {Twy+ Brazest 3rioeat Tareot Froz+ Taaoa+Taao

An investigation of the small anisotropy case yields a representation of the qualitative
dynamics of the sphere.

The author is grateful to G.G. Denisov for his interest.
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