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AN ANISOTROPICALLY ELASTIC SPHERE IN FREE MOTION* 

V.V. NOVIKOV 

Corrections are found to the inertial tensor components of a rotating 
sphere in the case of small anisotropy of its elastic properties of 
general form. Singularities in the behaviour of the freely rotating 
sphere due to the intrinsic elasticity are discussed in specific examples. 
Without making any assumptions on the smallness of the anisotropy, the 
strain is calculated for a sphere having a plane of isotropy. It was 
shown /l, 2/ in the problem of the motion of a solid deformable body 
around a centre of mass under the simplifying assumptions that the natural 
vibration frequencies greatly exceed the angular velocity while the 
internal friction forces ensure sufficiently rapid damping of the natural 
vibrations, that taking account of the intrinsic elasticity of the body 
is equivalent to the action of a moment on it proportional to the fourth 
power of the angular velocity component and calculated by means of the 
solution of the quasistatic problem of the deformation of a rotating body. 

The moment corresponding to the influence oftheintrinsic elasticity 
has been calculated /3/ for a body close in shape to a sphere. The 
homogeneous anisotropically elastic sphere in free motion considered in 
this paper is still another example when the solution of this problem 
can be obtained by analytic means. The representation of the behaviour 
of this system can turn out to be useful when considering questions of the 
earth's motion in connection with the hypothesis that the earth has the 
features of a complex crystal. 

Let us represent the stress tensor in the form 

Uij= hn1$,j + 2Puij + CijnmU*n* 

where uij is the strain tensor, hand p are Lam& constants, and ui are the components of the 

displacement vector. The tensor of the elastic constants cljnm satisfies the following 
symmetry conditions /5/: 

Cifnm= cjinm= Cijmn=Cnrnij 

and has 21 indepdent components in the most general case of an anisotropic linearly elastic 
body. 

We shall consider only the almost Eulerian motionsofa deformable body. This is possible 
if it is sufficiently rigid and the vibrations of the elastic body that occur damp out rapidly 

/2/. The elastic constants are such that the following inequalities are satisfied 

e < 6 < 1 (E = pRZl(pLt*2)) (1) 

where p is the density, R is the radius of the sphere, t,is the characteristic time of sphere 
motion as a whole, and 6 is the ratio of the greatest of the elastic constants Cijnn, to 

*Prikl.Matem.Mekhan.,51,5,767-774,1987 



601 

We represent the displacement vector u(r,t) in the form of a series in the small par- 
ameters e and d and we confine ourselves to just the first terms therein 

u (r, t) = s ru,jr, t) + &I, fr, t)l 

Under assumptions (1) the elastic displacements !.I,, (r, t) and u1 (r,t) can be evaluated in 
the ~W,z, coordinate system, fixed in the undeformed sphere /3/. 

The displacement vector u (r, t) is determined as a result of solving the following 
problems. 

lo. Tfie problem of the deformation of a rotating, homogeneous, isotropic sphere 

&Xf~o/&J = f; inY; ol#“aj = 0 on s 

D 

uij=x ax, 
.E?L- 6,, -t 7 + 

auoi 
7’ x=L 

%/ 

IJ i P 
f=wx(oXr) 

$0 is the angular velocity, and n is the vector normal to the surface). Here and henceforth, 

R% t*, are taken as scale factors and M is the mass of the sphere 

.?*. The problem of calculating u,(r,t) for known uO (r.t). 

Taking account of the elastic properties of the body, the angular velocity 0 is deter- 
mined as a result of solving the equation 

KfoxK=O 

where the components of the kinetic moment vector K (taking into account only terms linear 
in u ) are determined as follows: 

we will use the solution of the problem (2) presented in f31. We have in a Cartesian 
system of coordinates 

Cyclic permutation of xl, 5, zs and ml, oS, wS yields uO,. and u08. 
The solution of the problem (3) Is preceded by the calculation of the expressions on the 

right-hand sides of the equations and boundary conditions. The expressions are not presented 
because of their awkwardness. 

Utilizing the fact that c%,,,,~/~~J are linear in x1,x,, r~ while u,,,,,%~ contains linear 
and cubic terms in the space coordinates, we represent the problem (3) in the following form 

(x + 1)grad divu, + Au, = xlal +.z;a,+xsa,inV (4) 

[ 
x dUliliij + 

% 
q$- + z$] xj = bf,lq + b*&,“x:x,‘; (5) 

n+k+l=3 on S 
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The quantities aij, bij, btnkl in these relationships include 21 elastic constants aijnrn in 
the general case. 

Starting from the equations and boundary conditions (4) and (5), it can be concluded that 
s1 (r* 1) should be sought in the form of polynomials 

u1=A,,~ + Bkmpxlkx YrsP 

n,k,m,p=*,2,3;2k+m+p=3 

It is necessary to determine 39 quantities A,, and Bitimp. 
After substituting u1 into (4), equating terms in zl,x,,xs to zero, we obtain 9 equatios. 

The boundary conditions (5) yield 3 relationships that satisfy xl' fxa8 fxs2 = 1 onthe surface 
of the sphere. Each of them can be represented in the form 

i$l xi IDi + x12Dil + xzaDi, + x9'Dis] + x1x2xgD4 = 0 

where Dij and D, contain unknown expansion coefficients At,,, Btkmp and the parameters alll,,,. 
Requiring that the equation for the surface of the sphere be extracted in the expressions in 
the square brackets, and that the expression with xlxexQ vanish, we obtain 30 algebraic 
equations. 

The system of 39 equations from which the quantities AI,and 8,,,, are determined are 
separated into four groups of equations. Coefficients evaluated independently of the others 
and, respectively, determiningthe additions to the diagonal components of the inertial tensor 
I ii" and to the centrifugal moments of inertia I,,",Ils",I~ga are in each of the groups. 

The solution of problem (41, (5) results in the following expressions for the corrections 
to the inertial tensor components 

I V - 2~5 {w" [srsun + ~4 @~,a + errsa) + ~9 @vm + 11 - 
a1313) + El4 @9999 + ~3333) + wh3 + e19~93991 + 

01 9 [w1lll + es (all99 + k33) + elo (a1919 + a13l3) + 

El5 (a 2222 + 2a9933 + a3333)l + 099 Iwb9 + wllSS + 

~10=1919 + w2999 + ka9933 + (el9 + l/9e39) ~3333 + (El0 + 

e93) a93931 + aa9 [w+99 + wllaS + ~~~c~l3 + h3 + 

'/9d h9 + ~~9~99~3 + e19~3333 + (~9 + e93) ~asssl + 
@l% [%&IO + %lkw + wlaa3 + G%9 + %s) a1393l + 

0~03 le3ul113 + C&9 + 4 +29, + wh399 + ellk3J + 

090~ Iw1193 + 2w4913 + e13 b.93 + ~,83s)l~ 

Ilz’ = -1135 i-0' IWll + ed (a,,,, + aled - ~ZB~128~ + 
(2h + eZd alala + ala [(epl + l/ahs) k12 + wh16 + 
(epI - d +2331 + ce4’ [e814112 + (eZ1 + ‘/hJ h28 + (891 - 

~93) al933l + ma9 le99 (a,,,, + a1993) + ~9~~~~~3 + %3a13931 -t 

o16h [El0 (allll + %29+ h99) + h4 h133 + a9933) + 

wb9 -t co8 (alal + a9323) + ~99a3~~31 + 0103 [893k23 + 

(e93 - e93) h13 + (~3 - 4 Oh23 + a9333N + 

090~ le93k92 + (~93 - e23) h13 + ha4 + (ES - 

4 %*93l~ 

e1 =+ - +E,+ 45, + GE19 + 4E,E, - 125,' - 140Ea2 

EZZ --g + +:, + 7f,, - +y + 12& 

E3 = - + + 25, + 42$, - 12E,2 + 24&E, 

e,=-$- + Jgs,+ 14L + * 51" + 4ElE, 
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The expressions for the remaining corrections to the inertial tensor components are 
obtained as a result of cyclic permutation of %r %I 08 and the subscripts $,$,2,3 in dzJtl 

(the smetry properties are used here). 
The inertia tensor of an anisotropic elastic sphere has the form 

where I,," is the inertial tensor of a non-deformable sphere, and iij' is the correction to 
the inertial tensor related to the deformation u,,. 

The quantities Iii', Iif are quadratic functions of the angular velocity components. The 
components of the kinetic moment vector and the body energy are represented in the form /3/ 

The components of the tensors Kklrn and K&I can be calculated from the results 
presented In the paper. The components of the tensor KXpqlm are not presented here because 
of their awkwardness, while the following relationship holds for Kkpl,,, 

As in the case of a solid body or an elastic quasisphere /3/, the integrals of tbe Euler 
equation E' = const and K2 = const enable us to make a deduction about the nature of the 
motion of the body by means of the hodograph of the vector relative to the body, which is 
determined by the intersection of a centrally symmetric fourth-order surface E = const with 
spherical surfaces 41SE - ~/2K211, = const corresponding to different Ka. 

Let us illustrate the results by the following two examples. 

lo. A sphere in whose elastic properties there is an isotropy plane. All the directions 
in planes normal to the ox9 axis are equivalentwith respect to the elastic properties and 
the body is isotropic in these planes. In the general case the anfsotropic properties of the 
body are characterized by the following parameters /6/ 
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%I33 ~ %%33 - a3 QIS - amzs = b, %SS = c 

The "non-spherical" part of the expression K&,m~pmq~,~,,,, that has the form 

is of interest. 
It can be seen that for any value of the parameter XE[~,CO) (Poisson's ratio is O<a< 

0,5)~,,> 0, Q1> 0, while the quantities Q4 and Qs are negative, hence QZ - l/,8,,> 0, Qs + V4ea6 < 0. 
?&t a=b=O and c>O. The surface of the stress coefficients /6/ is an ellipsoid of 

revolution, the most pliable body in the OX~S, plane. We find from relationships (6) that 
for constant KS the greatest energy corresponds to rotation around OX,. Takingenergy dis- 
sipation into account, we conclude that rotation around the axes lying in the Ot,s, plane 
WC.1 be asymptotically stable. 

ized 

Fig.1 Fig.2 

The hodograph of the vector o relative to the body is shown in Fig.1. 
The analysis for aribitrary values of the parameters a, b,e can be performed analogously. 

2O. A sphere whose elastic properties possess cubic symmetry. The anisotropy is character- 
by the following parameters 

The "non-spherical" part of the expression K~,,,,o~o~GIw,,, has the form 

(1 - ZL +.6&*)(c - a - 26) (oIpoaa + ol*oI' + o,%~~*) 

It vanishes for C= a+ 26, which corresponds to an isotropic elastic body. 
Let a>0 and (or) b>O,c=O. The surface of the stress coefficients that has the 

symmetry of a cube, is oriented so that the axes of the &,X,X, coordinate system pass through 
the centre of the faces of the "cube", i.e., the body is most pliable inthedirection of these 
axes. 

Fixing the magnitude of the kinetic moment vector , calculating its corresponding angular 
velocities for different stationary rotations of the sphere, we find that the energy E is 
minimal for e oriented towards the middle of the faces of the cubic surface of the stress 
coefficients (Fig.2). A% in the previ.0~6 #ee, we conclude that cxd.y rotat+on axd dxe 

axes of greatest pliability will be asymptotically stable. 
Therefore, there is a complete analogy between the behaviour of the freely rotating 

anisotropic elastic sphere considered in this paper and the homogeneous isotropic elastic 
quasisphere studied in /3/. 

The study was carried out assuming small anisotropy of the elastic properties of the 
body, resulting in a considerable simplification of the problem and enabling the corrections 
to the inertial tensor components to be evaluated. If this assumption is dropped (6 - 1), the 
problem is not solvable for anisotropy of the elastic properties of general-form because of 
difficulties of a calculational nature , although these difficulties can be overcome in a 
number of the simplest cases. 

In conclusion, without assuming the anisotropy to be small, we again examine a freely 
rotating sphere in whose elastic properties there is a plane of isotropy. A quasistatic 
problem of the form (2) is solved 
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aUij/aXj = fr in V; uifnl = 0 on S 

Here Utj = h~jkg+.. The following components of the tensor hfihi are different from zero 

a -1 1111 - aeza = x + 2, a,,,, = X, al,,, = 1 

a 1138 = a $188 = a, a1813 + ha*, = b, km = c 

The displacement vector is sought in the form of the polynomial 

u==qn+3 -I- %&kx2%P 

n,k,m,p=1,2,3;k+m+p=3 

Calculation of the quantities in this expression yields 

913 = Qrn3l 911 = Qna9 4Sl = 432 

r l3oo = raoso, Fl12o = r2210, rlloa = r2012 

r 1o3o = r23007 r101r = rz102r hzlo = rzlzo 

F 3201 = ~3021~ F3102 = F3012: FlPOl = F2021 

i-lo21 = ~2z01~ ~~~~~ = reOOSl 7.3300 = ~3030 

73120 = F3210r 5111 = F2111? r1300 = F1120 

a 

r1210== - 
46 (x+1) 

[$(1+b)Q2+(2+3b)wl] 

P1012= --+2-+q 

1 

F1030 = 12 (x + 1) [ 
++P+ ( Q(y) -44(x+ l))&J 

1 
'3111 - b --[~(I+b)L1Z+(2+36)~,] 

B2 (~+1)[(.+46)(1+b),-tWJ--a*(i+b) 
w1=91*+ 921=-- 2 (x + 1) (212 + 86 + 3ab + 66%) - G(2+ 36) 

J-1021 =* [(b - 3) r1111- 2w2l 

r1201 = 
d-m 

z 1(X + Z)c- u*] )sllll 

1 
r 3120= - 26(3+6) 12% + b (b + 1) rllll I 

a 
J‘3102 = cr”-(x;-2)c rllll 

_ tL'2 
rloo3- - 36 + rllll 

U.-p 2 

r 3300= - 34 + ti,u20;x; i!)C], rllll 

r 1102= 
1 - 

La (a + 26) f 
-$L22 - boa2 - 8 (x + 2) br,,,, + 3 (a + b) crsoo3 

3 

ryTol = - 
1 

Za (a + 26) X 

c 
-$ ~2’ + (a + b) aa* + 8 (x + 2) (a + b) rlSOO - 36cr,,,] 

q11 = 
i 

4 (a + 26) [(X + 1) c _ u2] {+ (c - 2a) Qn + 

[c (a + b) + ‘abl aa2 + 4 [2b (x + 2) (2a - c) + c (a + 2b)l x 

rlaoo + 3bc (2u - c) rzoo3 
1 

qm = 

1 

2 (a + 20) [(x + 1) E - aq i 
+2(x + I)- u]P-- 

W(r. + 1) + ~(a + b)] aa2 + 4 [2ub (x + 2) - a (a + 2b) - 

4b (x + 1) (x + 2Ilr1300 + 36~ [a - 2 (x + I)] r,,,s] 
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r1300 = ‘Jw3 “{Jg- [2a” (a - 26) - c (a (a f b) + 2 (a - b) (x $- I))+- 

~“(xt1cb)]+0,~[--u~b_tc((z(b--n)+4b(x$.1))i- 

cs (x + 1 + b)]) 

1 
rmo9 .F== - U’Q ); 

-$ (8 (x -f- 1) (1(. + 2) b + 4a (x. -+ 2) (b - a) f 

2a(2;0+a--4ab+a2j+c(a+4(x-i_1)(?c+2)+ 

2(r.+2)(3b-u))]+w,2[2aZ(a-b)-4ab(x+2)- 

c (n. -!- b) (2x f 3)]j 

2~3 = 3 f-4a’ la (a + 26) - 4b (x + 2)l + 2c [Za (a + 6) (2% + 
3)--8b(x+1)(~+2)+ab(3a--2)l+c2ib-&(x-1_ 
2) - 4 (x + 1) (K I- 2)l) 

It is assumed here that o1 = c+. = '/z f2Q. The quantities (112tqz1,qlsrq31 can be evaluated 
by jointly considering the relationships w, = gxe $ qel, w, = qz3 + gal, and the condition of no 

motion of the body as a whole s r X u&V = 0 [31. in the system 0x1x2x3. 
Y 

The expressions presented for 'Jiij rijkl enable us to find the corrections to the inertia 
tensor due to the anisotropies of the elastic properties of the sphere from the formulas 

lu'=I,,'= & I7 (qll -I- 4A + *rmoO + 3r,00s + rllDt + 2r9A 

&=& 17% + 4r,%xl + fllWJ 

f,,'= - -& {7W, A- Gr,,,, + 2r,,*, -I- 2r,,,,) 

1 
I,,’ - 12$’ = - x (7wfi + 3r 3300+ 3r loo8 + rslao f rlazl f r310a -Wl,d 

in investigation of the small anisotropy case yields a representation of the qualitative 
dynamics of the sphere. 
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